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The wall shear stress, which is proportional to the negative
value of this quantity, is seen to be independent of ¢ to the
first approximation and decreases slightly from R, = — 10
to 100 (sec the table). The effect of the second-order
modification is generally small and diminishes with the
increase of distance ¢. Thus, as in the hypersonic small-
disturbance theory, the first-order approximation is expected
to describe rather accurately the flow conditions in a porous
paraboloidal pipe.
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INTRODUCTION
APPROXIMATE solutions to transient diffusion problems may
be obtained relatively easily by the use of what is commonly
called “The Heat Balance Integral Method,” THEBIM.
THEBIM is applicable to one-dimensional linear and non-
linear problems involving temperature dependent thermal
properties [6, 7, 18], non-linear boundary conditions {7, 9],
and phase change problems such as freezing [4, 5, 7-11, 17].
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The applicability to phase change problems is of special
importance {1, 2, 16] because existing closed form solutions
to these significant problems are highly restrictive as 1o
allowable initial conditions and boundary conditions
3, 12-15}.

The accuracy of an approximate solution is in general
unknown [2.5-8,11,16]. Using THEBIM, attempts to
increase the accuracy of an approximate solution have
sometimes actually caused a decrease in accuracy [6, 7. 16].
There may therefore be some value in an accuracy criterion
which can be easily used even when the exact solution is
unknown. The use of such a criterion is illustrated here for a
classical problem.

A SAMPLE PROBLEM

Let Ti(x, t) be the temperature at position x at time t in a
semi-infinite slab having constant thermal conductivity k,
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density p, specific heat ¢, and thermal diffusivity a = k/pc.
Also, let subscripts in x and ¢ denote partial differentiation,
50 T.fx,t) = 9>T/0xot. Finally, let g(x, t) be defined as the
heat flow in the + x direction per unit time per unit of
transverse area. Then, from Fourier

qix, ) = — kTx,?), o<t (1)

For no internal heat sources, (1) and conservation of
energy yield the usual partial differential equation

0<x,

kT (x, 1) = pcTx, 1). 2

Initial and boundary conditions to be used are
T(x,0) = Tpue = T; = constant, x > 0; (3)
T(0,t) = Turiece = T, = constant, ¢t > 0; (4)

T(2,t) = Tiyum = T; = constant, tfinite.  (5)

Equations (2){5) constitute a classical problem with
solution [3, 16]
(T— TUT, ~ T) = [1 ~ erf(\/(x*/4a1))], where  (6)

Qdt) = geree (0,8) = — kTL0,8) = HT, — T)/Jnar).  (7)

THE APPROXIMATION PROCEDURE
Assume there exists a function U with

Ulx, t) ~ Tix, 1). (8)

The actual temperature distribution T(x,t) satisfies the
partial differential ecquation (2) and also the folowing
integral equation :

{40, £)dt' = [ — KT(0,1)dr = | pe[Tix, 2
0 ] 0

- O, )] dx. (9a)

This is simply a “balance™ of the heat energy input on the
left against its measurable effect on the right ; it may be called
the “heat balance integral”. Many approximation techniques
(e.g. that of “lumped parameters™) do not satisfy (2) but do
satisfy (9a) [1,16]. Here also it is not required that U
satisfy (2) but it is required that U satisfy (9a) so

[ = kU0, )t = ‘f pclUx, 1) - T)dx.  (9b)

0

Assume that, at any finite time ¢, the significant (measur-
able) effects of the boundary disturbance (3) and (4) do not
penetrate beyond some finite distance x = p(1). This
assumption can be stated in the following mathematical
form:

Ulp(t,) = T; (10a)
Ux,) = T, for x> pl1). (10b)

Use of (10b) in (9b) yields the following form of the heat

for t >0;
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balance integral :

A
(I) pc[U(x, ) — T} dx.

{ kU0, 1) dr = (11)
/]

Equation (11) will be used in place of (2). In place of the
initial condition (3), the appropriate initial condition is

pO) = 0. (12)

Also, the boundary conditions (4,5) on T(x,t) are now
replaced by the following boundary conditions on U(x, 1).

U,t) =T, for t>0; (13)
Ulp(1), ) = T, (14)

The approximation procedure is now reduced to finding a
function U(x, t) ~ T{(x, t) such that (13) and (14) are satisfied,
this function U then being used in (11) to find the penetration
depth p(), subject to the initial condition (12). In finding
Ulx, t), it is convenient (but not necessary [7]) to restrict
the search to polynomial functions of the form

Uldx, ) = Aft) + Bt).x + C,(5.x* + ...x", (15)

where the coefficients are functions of time, and where the
corresponding value of p(t) will be denoted by p (1.

for t>0.

RESULTS

The first possible approximation of the form (15) which
can satisfy the two conditions (13) and (14) is

U,{x,1) = A,(t) + B,(t).x. (16)
Use of (16) with (13, 14) yields
[(U; - AT, - I)] = [1 - x/p,()]. 17

To find p,(1), it is necessary to use (17) in (11), yielding

— KT, - T) | [d/p,()] = pelT, — Top,(ay2.  (18)
0

Differentiation and rearrangement yields

p; -(dp,/dt) = 2a = constant. (19)
Integration and use of the initial condition (12) yields
p.() = /(4ar). (20)

The first approximation U,(x, ) is fully defined by (17)
and (20). Note that

o) = - ka,(o’ ) = KT, - T)/p,
= KT, - T)/J/dar);  (21)
M, = [Q,()/Q4t) — 1] = —~ 0114 = — 11-4 per cent. (22)

HIGHER APPROXIMATIONS

It is possible to increase the degree of the polynomial
approximation U,(x,t). The degree n that can be used
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increases with the number of conditions such as (13) and (14)
available to determine the coefficients of UJfx, ). Extra
conditions cannot be obtained by simple differentiation of
the boundary conditions (13} and (14) because such differenti-
ation yields two conditions already satisfied identically by
U (x, 1), namely
U0.1) =0, (23)
and
U(p(), t).(dp/dty + Udpity t)=0. 24

It is however possible to require that U(x, ¢) satisfy the heat
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whence

pit}

kU pit) 1) = kU080 = § pcUfx, B dx. (28)
i

But, from (14), U(pit).t) = T, = constant so (28} can be

written

ol N

d \
kU (p(1),t) — kU 10,1) = 5;2( § pelUlx0) = Tdxp.  (29)

o i

Differentiation of (11) with respect to time and use in (29)
then yields the following as the simplified form of the new

Table 1. Approximate temperature distributions U, in order of decreasing e, *

M, Uhx,t} - T; x Conditions used to
n o € b, Uly) & ——0——, y=-~ .
(%) .-T P obtain U, (x, t)
1 —11-38 0-1667 4 uy ={1 -y 11-15
2L —11-38 0-1667 4 Uy =1~ y+ 0yt 11-15, 25
1 4
3LR  —3958 00907 16 upg =1 — % v+ 07+ m ¥ 11-15, 25, 26
3 1
3L -~ 600 00417 8 Uy, =1 — 39+ 0y* + 5_\13 11-15,25. 27
3R +854 00233 24 uyg ={1 — 3 = 1 = 3y + 3y? — 3 11-15,  26.27
2 +2:33 00192 12 =l =y =12y + 3 11-15, 27
-1 33-3
2R +113 00175 J33)+3 uyg = 1 + [i@%}__} ¥+ [—\—/L%———} ¥ 11-15, 26
4 -2:92 0-0053 Uy, =1 —=2y + 0y +2y% — y* 11-15. 25, 26,27

* Note: M = [U,(0, )/T(0, ) — 1] = dimensionless error in surface heat flux; p = ./(b,at).

conduction equation (2} at x = 0 or x = p{t} or both. Use of
(2} in {23) and (24) yields

U, 0,8 =0, (25)

and
U {p0), 1).(dp/dt) + alU (p1), 0) = 0. (26)

Let U,pix 1) and U,g(x, 1) be the second degree poly-
nomial approximations corresponding respectively to the
use of the extra conditions (25) and (26) at the left end
{x = 0) and right end {x = p) of the domain, with each
approximation also satisfying (11){15). Results are in
Table 1, and it may be noted that U, does not seem to have
been published previously.

An alternate second degree approximation can be obtained
by requiring that the approximation U(x, t) satisfy the heat
conduction equation (2) on an algebraic average basis over
the domain 0 € x <€ p(t). Mathematically, this domain
condition can be stated thus:

P}‘} (kU (x. 1) — pcUfx, ] dx = 0, 27
]

domain condition (27):
kU {pit) ¢t} = 0.

Let U,(x,t) be the second degree polynomial approxi-
mation corresponding to the use of (27) in lien of (25) or (26).
Results are in Table 1.

“Higher” approximations can be obtained by requiring
that U(x, t) satisly two or three of the conditions (25}-{27).
Resuits are in Tabie 1.

{30)

ACCURACY

The following is a calculable measure of the error inherent
in the use of any approximation Ulx, i}

Pty .
Ety= | [kU,fx, 0 — pcUdx, 0}*dx = 0. (31)
0

If U(x, ) were the exact solution T(x, ¢), then E(t) would be
identically zero by (2). The effect of the square under the
integral is to prevent algebraic canceling of errors of opposite
sign and to magnify the importance of space regions wherein
U(x, 1) does not closely satisfy the heat conduction equation
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{2). Let E,(t) be the result corresponding to UJx, 1), p(t).
Then

Eft = e, ([T, — T]P .(a)"%, e, = constant. 32)

The lower the value of E{?) or of e,, the more accurate the
solution is expected to be. This expectation appears to be
borne out by a comparison of the U [x, ) with T(x, t).

A graph could be used to show the U (x,f) and T(x, t}asa
function of the single independent variable ¥ ={x/./(4a1)).
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the relative accuracy of successive approximations even
when the exact solution is not known.
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