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- 
-1-O 4.24 - 305 -0945 26.4 - 7.41 - 3.01 
-5.0 490 -61.6 - 2.97 1520 - 6.30 - 3.9t 

- 10.0 5.54 - 109.0 - 6.98 661.0 - 623 -4.16 

The dimensionless velocity gradient at the wait is given by 

The wall shear stress, which is proportional to the negative 
value of this quantity, is seen to be independent of e to the 
first approximation and decreases slightly from R, = - 1.0 

3, 

to -10-o (see the table). The effect of the second-order 
modification is generally small and diminishes with the 
increase of distance <. Thus, as in the hypersonic smaIl- 

4. 

disturbance theory, the first-order approximation is expected 5. 
to describe rather accurately the flow conditions in a porous 
paraboloidal pipe. 

lD%FERENcEs 

A. S. B-AH, Laminar flow in channels with porous 
walls, J. A@. Phys. 24, 1232-1255 (1953). 
R. M. TERWL and P. W. THOMAS, On laminar flow 
through a uniformty porous pipe, A&. Sci. Res. ZlA. 
37-67 (1969). 
M. J. MANTON, Low Reynolds number flow in slowly 
varying axisymmetric tubes, J. Fluid Me&. 49. 451-459 
(1971). 
W. D. HAYES and R. E. FROIETEIN. Hypersur8ic Fh 
Theory. Vol. I. Academic Press, New York (1966). 
J. SWRIN, Asymptotic behavior of velocity profiles in.the 
Prandtl boundary layer theory, Proc. R. Sot. 2% 491-507 
11967). 

Im. 1. Hror A&us Tramffrr. Vol. 16, pp. 2424-2428. Pergsmoa Ross 1973. Priated in Great Britarn 

THE HEAT l&ALAN- INTEGU METHOD* 

DAVID LANGFORDt 

Department of Mechanical Engineering, Drexct University, Philadelphia, Pennsylvania 19104, U.S.A. 

(Received 1 Much 1971 and in revisedform 25 May 1973) 

INTRODUCTXON 

i%PPROXlMATE solutions to transient diffusion problems may 
be obtained relatively easily by the use of what is commonly 
called “The Heat Balance Integral Method,” THEBIM. 
THEBIM is applicable to one-dimensional linear and non- 
Iinear problems involving temperature dependent thermal 
properties [6,7,18], non-linear boundary conditions [7,9], 
and phase change problems such as freezing [4,5,7-l& 17. 
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The applicability to phase change problems is of special 
importance [I, 2,163 because existing closed form solutions 
to these signifkcant problems are highly restrictive as to 
allowabk initial conditions and boundary conditions 
13,12-153. 

Tk accuracy of an approximate solution is in general 
unknown [2. S-8, 11, 161. Using THEBIM, attempts to 
increase the accuracy of an approximate solution have 
sometimes actually caused a decrease in accuracy [6,7. 161. 
There may therefore be some vaiuc in an accuracy criterion 
which can be easily used even when the exact solution is 
unknown. The use of such a criterion is illustrated here for a 
classical problem. 

A SAMPLE PROBLEM 

Let nx, r) be the temperature at position x at time t in a 
semi-infinite slab having constant thermal conductivity k, 



SHORTER COMMUNICATIONS 2425 

density p, specific heat c, and thermal ditfusivity a E kjpc. 
Also, let subscripts in x and t denote partial d&rent&ion, 
SO T,,(x, t) = a2Z?axat. Finally, let 4(x, f) be delined as the 
heat flow in the +x direction per unit time per unit of 
transverse area. Then, from Fourier 

q(x, t) = - kT’x, Q. 0 < x, 0 d t. (1) 

For no internal heat sources, (1) and conservation of 
energy yield the usual partial differential equation 

kT,(x, t) = pc7’Jx. t). (2) 

Initial and boundary conditions to be used are 

T(x, 0) = ‘I;“*,**, =T=constant. x>0; (3) 

T(4 t) = T&hcr = T,=constan& t >O; (4) 

VW, t) = TL.LII~I E r = constant, t finite. (5) 

Equations (2)-(5) constitute a classical problem with 
solution [3, 161 

(T- T3/(T, - ?J = [l - erf(,/(x’/4ut))]. where (6) 

Q&) P q...a (0, t) = - kT’J0, t) = k(T, - 7&,&z). (7) 

THE APPROXIMATION PROCJCDURE 

Assume there exists a function U with 

Ufx, t) = nx, t). (8) 

The actud temperature distribution 7Yx, t) satis& the 
partial differential equation (2) and also the following 
integral quation : 

d 4(0, t’) dt’ = j - kT.0, 1’)dt’ = i pc[nx, t) 
0 0 

- 770, t)] dx. (9a) 

This is simply a “balance” of the heat energy input on the 
left against its measurable effect on the right ; it may be called 
the “heat balance integral”. Many approximation techniques 
(e.g. that of “lumped parameters”) do not satisfy (2) but do 
satisfy f9a) [l, 161. Here also it is not required that u 
satisfy (2) but it is required that U satisfy (9a) so 

[ - kUd0, t’) dr’ = 9 pc[Ufx, t) - B dx. (9b) 

Assume that, at any finite time t. the sign&ant (measur- 
able) effects of the boundary disturbance (3) and (4) do not 
penetrate beyond some finite distance x - p(t). This 
assumption can be stated in the following mathematical 
form : 

U(p(t),t)=T for t>O; (loa) 

U(x, t) = ‘1; for x > p(t). (lob) 

Use of (lob) in f9b) yields the following form of the heat 

balanceintegral: 

[ - kU,.(O, t’) dt’ = $ pc[ Ufx, t) - ?;] dx. (11) 

Equation (11) will be used in place of (2). In place of the 
initial condition (3), the appropriate initial condition is 

p(O) = 0. (12) 

Also, the boundary conditions (4.5) on nx, t) are now 
replaced by the following boundary conditions on U(x, t). 

UCO,t)==~ for t>0; (13) 

U(p(t), t) = T for t > 0. (14) 

The approximation procedure is now reduced to finding a 
function U(x, t) u T(x, t) such that (13) and (14) are sati&d, 
this function U then being used in (11) to fti tbe penetration 
depth p(t), subject to the initial condition (12). In fmding 
U(x, t), it is convenient (but not necessary [I) to restrict 
the search to polynomial functions of the form 

U”(X, t) = A&) + B”(t). x + C,(t). x2 + . . . x”, (15) 

where the coefficients are functions of time, and where the 
corresponding value of p(t) will be denoted by p&). 

REsuLT!3 

The first possible approximation of the form (15) which 
can satisfy the ww conditions (13) and (14) is 

U,(x, t) = A*(t) + B,(@.x. (16) 

Use of (16) with (13, 14) yields 

W, - Q/K - 231 = I1 - X/P,(Ql. (17) 

To lind p,(t), it is nccegPary to use (17) in (ll), yielding 

- kP, - , j [df/p,Wl = pdT, - ‘I;lp,W2. (18) 
cl 

DifIerentiation and rearrangement yields 

p1 .(dp,/dt) L 2u = constant. (19) 

Integration and USC d the initial cxmditicm (12) yields 

PA0 = JW). (20) 

The !imt approximation U,(x, t) is fully de!ined by (17) 
and (20). Note that 

QA4 f - kU,_@, t) = MT, - a/p, 

- MT, - T,uJw4; (21) 

M, 5 [Q#)/Q&) - 11 = - 0114 = - 11.4 per cent. (22) 

HIGHER APPROXIMATIONS 

It is possible to increase the degree of the polynomial 
approximation U,(x, t). The degree n that can be used 
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increases with the number of conditions such as (13) and (14) whence 
avaiiabte to determine the coeffkients of C.J,,(x, r). Extra JW 
conditions cannot be obtained by simple d~e~n~tion of &U~~~r~ r) - fcUJ0, r) = J @Ax, r) dn. (28) 
the boundary conditions ( 13) and (14) because such difkrenti- 0 

ation yields two conditions already satisfied identically by 
U r(x, t), namely 

But, from (14), Ufplt). t) = ‘I; = constant so (28) can be 
written 

UJO, t) t 0, (23) d <P(t) 

and 
kU,W), t) - kU,& c) = z{ j pc[Uk r) - T] d-x-/. (29) 

U&Q), tf. fdp/dr) i- U,&t). t )= 0. 124 
Differentiation of t 11) with respect to time and use in (29) 

It is however possible to require that U(x, t) satisfy the heat then yields the following as the s&&id form of the new 

Table 1. Approximate temperawe distrjbutions U, in order of decreasing e,,* 
- . 

WI U,(x, t) - 2 X Conditions used to 
n 

(%) 
e, b, %(Y) = 

T,-T ’ Y”p obtain U, (x, I) 

:L 
- il.38 01667 4 ur = (1 - y) 11-15 
- 11.38 @I667 4 UZ& = 1 - y t Oy” 1 l-15,25 

3LR -39.58 0@07 16 US&A = I - gy + oy2 + ;ys 11-15.25.26 

3L -640 0.0417 8 ujf_ = 1 - fy + Oy’ + ;yl 1 l-15,25. 27 

3R “I- 8.54 @0233 24 QR = (1 - yY = 1 - 3y + 3yJ - y3 11-15, 26.27 
2 i- 2.33 O-0192 12 u2 = fl - rV z 1 - 2y + yz 11-15. 

2R + 1.13 0.0175 Jf33P 3 U2r’~+~~~~+~~j92 27 11-15, 26 

4 - 2.92 QOO53 lid = 1 - 2y + oy2 + 2yJ - yJ 1 i--15.25,26.27 

* Note: M ss [ U,(O, t)/T.O, t) - 1] = dimensionless error in surface heat flux : p = ,/fb,at). 

condu~on quation (2) at x = 0 or x = p(t) or both. Use of 
(2) in f23) and (24) yields 

and 

UJO, 0 = 0, (25) 

U&W. r).(dp/dr) f oU,&r), 0 = 0. (26) 

Let Us&x, r) and U&x, t) be the second degree pofy- 
nomiaf approximations correspondin respectively to the 
use of the extra conditions (25) and (26) at the left end 
(X = 0) and right end (x = p) of the domain, with each 
approximation also satisfying (11)-(15). Results are in 
Table 1, and it may be noted that UJ,, does not seem to have 
been published previousiy. 

An alternate second degree approximation can be obtained 
by requiring that the approximation Ufx, t) satisfy the heat 
conduction equation (2) on an algebraic average basis over 
the domain 0 Q x $ fit). Mathematically, this domain 
condition can be stated thus : 

j [kU&x. t) - pcU& 41 dx = 4 ml 

domoin condition (27) : 

kUJp(t), t) = 0. (30) 

Let U#, t) be the second degree polynomial approxi- 
mation corresponding to the use of (27) in lieu of (25) or (26). 
Rsalts are in Table 1. 

“Higher:’ ap~o~~tio~ can be obtained by requiring 
that Uk t) satis& two or three of the conditions (253-127). 
Results are in Table 1. 

ACCURACY 

The following is a calculable measure of the error inherent 
in the use of any approximation Utx, t) : 

i?(t) 3 j [ku&, t) - pcu,k t)]’ dx > 0. (31) 
0 

If U(x, t) were the exact solution Tfx, t), then E(t) would be 
identically zero by (2). The effect of the square under the 
integral is to prevent algebraic canceling of errors of opposite 
sign and to ma&y the importance of space regions wherein 
U(X, t) does not closely satisfy the heat conduction equation 
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(2). Let E.(t) be the result corresponding to u&z, t), pats. the relative acYxmcy of sudvc approximations even 
Then when the exact sofution is not known. 

E&t) = e,. Uc[ T, - B I2 . (at)-*, e, = constant. (32) 

The lower the value of E&t) or of e, the more accurate the 
solution is expected to be. This expectation appears to be 
borne out by a comparison of the V&, t) with ?Tx, t). 

A graph cotdd be used to show the V&z, f) and ZTx, t) as a 
function of the single independent variable Y=(~/~(~I)). 
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Table 2. Error txrsw position when using an approximation U, 
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e, = 0.1667 oo907 0.0417 0.0233 0.0192 00175 m53 e. 

* Note: Blank entries in the table correspond to x > p&). For blank entries, U, = x and the scaled error is exactly 
equal to the ne&ve of the value shown in the second column above. 

The various curves on the graph would however lie very 
close to each other and would cross, making the graph 
difficult to interpret. In lieu of the graph, Table 2 presents the 
scaled error [(U, - Tlft T, - QJ as a function of Y 

The relatively high accuracy of Ujl was not anticipattd, 
but was easily recognized by virtue of the low value of ess. 
[Those involved in boundary layer analysis may wish to 
keep in mind t&t UIR is a highly accurate solution which 
does nor satisfy the domain condition (27) or, equivalently, 
the smoothing condition (30)-3 

In conclusion, use of the numerical error criterion E(t) 
appears to make possible the straightforward evaluation of 
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